Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol.

نویسندگان

  • Stephen A Mang
  • Dana K Henricksen
  • Adam P Bateman
  • Mads P Sulbaek Andersen
  • Donald R Blake
  • Sergey A Nizkorodov
چکیده

The photodegradation of secondary organic aerosol (SOA) material by actinic UV radiation was investigated. SOA was generated via the dark reaction of ozone and d-limonene, collected onto quartz-fiber filters, and exposed to wavelength-tunable radiation. Photochemical production of CO was monitored in situ by infrared cavity ring-down spectroscopy. A number of additional gas-phase products of SOA photodegradation were observed by gas chromatography, including methane, ethene, acetaldehyde, acetone, methanol, and 1-butene. The absorption spectrum of SOA material collected onto CaF2 windows was measured and compared with the photolysis action spectrum for the release of CO, a marker for Norrish type-I photocleavage of carbonyls. Both spectra had a band at approximately 300 nm corresponding to the overlapping n --> pi* transitions in nonconjugated carbonyls. The effective extinction coefficient of freshly prepared SOA was estimated to be on the order of 15 L mol(-1) cm(-1) at 300 nm, implying one carbonyl group in every SOA constituent. The absorption by the SOA material slowly increased in the visible and near-UV during storage of SOA in open air in the dark, presumably as a result of condensation reactions that increased the degree of conjugation in the SOA constituents. These observations suggest that photolysis of carbonyl functional groups represents a significant sink for monoterpene SOA compounds in the troposphere, with an estimated lifetime of several hours over the continental United States.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol effects on the photochemistry in Mexico City

Atmospheric Chemistry and Physics Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Abstract In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-...

متن کامل

Particle growth by acid-catalyzed heterogeneous reactions of organic carbonyls on preexisting aerosols.

Aerosol growth by the heterogeneous reactions of different aliphatic and alpha,beta-unsaturated carbonyls in the presence/absence of acidified seed aerosols was studied in a 2 m long flow reactor (2.5 cm i.d.) and a 0.5-m3 Teflon film bag under darkness. For the flow reactor experiments, 2,4-hexadienal, 5-methyl-3-hexen-2-one, 2-cyclohexenone, 3-methyl-2-cyclopentenone, 3-methyl-2-cyclohexenone...

متن کامل

Chemical Evolution of Secondary Organic Aerosol from OH-Initiated Heterogeneous Oxidation

The heterogeneous oxidation of laboratory Secondary Organic Aerosol (SOA) particles by OH radicals was investigated. SOA particles, produced by reaction of αpinene and O3, were exposed to OH radicals in a flow tube, and particle chemical composition, size, and hygroscopicity were measured to assess modifications due to oxidative aging. Aerosol Mass Spectrometer (AMS) mass spectra indicated that...

متن کامل

Reactive processing of formaldehyde and acetaldehyde

Atmospheric Chemistry and Physics Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. Abstract The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueo...

متن کامل

Identification of significant precursor gases of secondary organic aerosols from residential wood combustion

Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 112 36  شماره 

صفحات  -

تاریخ انتشار 2008